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Smoothing as a way to improve the carvier phase estimation is proposed and analyzed.
The performance of first- and second-order Kalman optimum smoothers are investigated.
This performance is evaluated in terms of steady-state covariance error computation,
dynamic tracking, and noise response. It is shown that with practical amounts of memory,
a second-order smoother can have a position error due to an acceleration or jerk step
input less than any prescribed maximum. As an example of importance to the NASA
Deep Space Network, a second-order smoother can be used to track the Voyager space-

" craft at Uranus and Neptune encounters with significantly better performance than a

second-order phase-locked loop.

l. Introduction

Carrier tracking (carrier phase estimation) is traditionally
accomplished using phase-locked loops (PLLs), which may be
residual carrier tracking loops, Costas loops, or sideband-
aided loops (combination of residual carrier tracking and
Costas loops). All these loops are causal, i.e., only past and
present data are used to estimate phase at the present time.
It is reasonable to expect an improved estimation by using
future data, i.e., by using noncausal filters. Implementing this
kind of estimator requires storage of the data for the length of
‘time necessary to acquire the future data. This is now feasible
for DSN carrjer tracking, using memory densities available
with current technology.

Linear estimators are classified as performing prediction,
filtering, or smoothing according to whether the parameter
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estimates for the present time are based on past data only,
past and present data, or past, present, and future data.
PLLs are causal; analog loops normally perform filtering,
and digital or sampled data loops perform prediction,
because of the transport lag inherent in the sampled data
implementation.

The sources of tracking errors for a given estimator can be
classified as those due to observation noise, modeled and
unmodeled state noise, and unmodeled dynamics. In a DSN
receiver, the observation noise is primarily due to receiving
system noise; the state noise is due to the oscillator, trans-
mitter, receiver, and propagation media instabilities; and the
unmodeled dynamics are due to spacecraft acceleration,
Earth rotation, or to the error in modeling these effects. By
using a smoothing estimator, one might intuitively expect
to reduce the phase-error variance due to observation noise




by a factor of two, perhaps by using future data in a similar
manner to past data, As shown later, this is true for first-
order systems, but significantly more improvement is possible
for higher-order systems. Finally, some cases of potential
interest to the DSN advanced receiver are considered in this

paper,

Il. Practical Realization of the
Smoothing Estimator

The proposed approach uses a Kalman estimation proce-
dure as a method to extend the filter solution to a smoothing
technique. Since the assumptions made to derive the Kalman
solution may be different from the real case, it is necessary to
evaluate the performance of the estimators for other cases.
In this paper, in addition to the steady-state Kalman solution,
~ a steady-state dynamic response and noise analysis are also
presented.

Figure 1 shows a block diagram of a possible implementa-
tion of a smoothing estimator. The implementation shown is
for a suppressed carrier signal with Costas-type phase detec-
tion. Residual carrier systems are similar except for the phase
detection, The signal () is

() = D(?) cos (w & + ¢ () +v'(¢) )
where
D() = binary data modulation
¢c(t) = carrier phase
»'() = narrowband white noise process
w, = received frequency
Also in Fig, 1,
8(f) = phase error, 0 (£) = ¢ (£) - 9,(2) A
¢,(f) = carrier phase estimate provided by the Costas
Loop
v"(#) = assumed white noise process
v(n) = sample of a white noise process
ac(n) = gsmoother estimate of the carrier phase

The suppressed carrier waveform 7(£) is initially tracked by
the Costas loop, which provides the estimate ¢4(#). The input
to the smoother is the sampled carrier phase ¢.(r) plus a noise
term, v(n), that is related to v'(?). ¢,(n) is modeled as a state
noise process driven by random noise, but actually also has
variations due to unmodeled dynamics. The output of the

smoother is an improved, albeit delayed, estimation of ¢,(r).
Note that whereas the actual sampling of the signal is per-
formed at the data symbol rate, T,, the estimates 6 (n) and
¢o(n) are based on the averages of those samples; i.e., the
sampling interval for ¢, (n) is T=M T,

In the proposed implementation, the initial phase estimates
are made at the channel symbol rate, but are then averaged
over M symbols before application to the real-time PLL and
to the smoother. The smoother update rate of 1/M times the
symbol rate can be chosen appropriately for the system
parameters, A rate of 10 -to 20 times the bandwidth of the
filter is typical, i.e., of the filter that forms the basis of the
smoother. As shown later, the smoother delay should be
several correlation times. Suppose the delay is 0.5 s, which
might be typical for DSN carrier tracking. At a symbol rate of
60 k symbols/s, a high rate for Voyager, only 30,000 symbols
need be stored, which is practical with current memories.

IIl. Smoother Mathematical Model and
- General Solution '

This section presents the mathematical model and the
general solutions to the filtering and smoothing problems.
Then the steady-state solutions of the smoother are investi-
gated for the first- and second-order cases in Sections IV
and V.

In navigation problems, the phase is related to position and
the phase rate to velocity. Also, to use the terminology in
several of the references, the following change of varjables is
used in the remainder of this article. For the second-order
system, define the state vector x(n) at sampling time nT as.

| 50
x(n) = @
%, (1)

x,(n) = ¢ (n) = position

where

x,(n) = ¢ () = velocity

We also consider a first-order system that has only the
position variable,

A. Nomenclature

The following notation and assumptions are to be used:

d
H

state transition matrix (assumed constant)

observation matrix (assumed constant)
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K(n) = Kalman gain matrix
P(n) = filter error covariance
Py(n) = predictor error covariance
Ps(n) = smoother error covariance
v(n) = observation noise sample vector (white)
w(n) = state noise sample vector (white)
x(n) = state vector
y(r) = measurement vector

Q

R = covariance of the process v(1) (assumed constant)

covariance of the process w(n) (assumed constant)

The smoother proposed is an optimum linear Kalman
smoother. Since the various equations that describe the esti-
mator are given in terms of the Kalman filter equations, some
of these equations are repeated here; however, the detailed
description and solutions of them are left to the references.
Noting the assumptions stated above, the following system
model equations are considered:

);(n +1)

= & x(n) + w(n)
Q = E [wmw (n)] (3)
y(n) = Hx(n)+v(n)
R = E [v(n)v(n)] @

B. Fiiter Equations

For the filter estimation, i.e., calculation of the estimate
x(n) of x(n) using observations up to the present sampling
time, r, the general Kalman filter equations are (Ref. 1)

filter state:
xg(1) = @ x, - 1)+ Kn) [y(n) - HO x(n - D] (5)
prediction error covariance matrix:
Py(n) = ®P,(n-1) 3" +Q (6)
filter error covariance matrix:
Pp(n) = [1- K(mH] P,(r) Q)
Kalman gain matrix:

'K(n) = P,(n) HT [HP, ()BT +R] "’ ®)
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The initial conditions are given as

E [x(0)]
E [(x(0) - x(0)) (x(0) - x(0)"]

%,(0)

P(0)

C. Smoother Equations

The following equations are for the fixed-lag smoother;
ie., a smoothing solution that estimates x(r) on the basis of
measurements up to time n + N, From Refs. 1 and 2, the

equations for such an estimate, denoted xg (n), are

xg(n+1) = &x(n) + QRT P! [xy(n) - ()]

+B(n+1+1\/)K(n+i+JV)[y(n+1+1\z)

-H® x.(n+N)] ©®
where
nt+N
B(n+1+N) = H A(), A@) =P ()T P (i+1)
i=n+1
n=201-"

The initial state is xg(0). The error covariance matrix of the
smoothed estimates is

P(n+1)= Py(n+1)-Bn+l+N) K(n+1+N)HP,(n

+1+N BT (n+1+N)- A7 (n) [P(n)

-1

- Py(m)] (AT(n)) (10)
for n=0,1, 2, - - -, where the initial condition is P(0). Both
initial conditions, xg(0) and Pg(0), are computed by using
the fixed-point smoother equations described next (Refs.l
and 2). Let xg4(0 1) denote the optimum smoothing solution

for the initial time O when i measurements have been taken.
Then

x,(01) = x5(0li- 1)+ B(i~ 1) [xp(D) - ® x.(i- 1)]

(11)
where
i-1
Bi-1) =[] A0, A®=P.()2" B! G+ 1)
7=0
xS(OlO) = xF(O)



P, 0l) = Py0li-1)+B@- 1) [Py()-P,()] BY(i-1)

P5(010) = P(0) (12)

The initial conditions for the smoother with delay NV are
then xg(0) = x(0|NV) and Pg(0) = Pg(0[N).

The steady-state solutions of the first- and second-order
smoothers are investigated in Sections IV and V.

IV. First-Order Smoother

In this case we consider only the estimation and measure-
ment of position. Thus all the variables are scalars:

x = position

® =1

H=1 (13)
Q= qr=q> T

R = o}

where T is the sampling interval, q is the spectral density of
the continuous white velocity process, and ag is the variance
of the position measurement. '

Define the parameter s = 0,/(0,T). The value of s com-
pletely characterizes the solution. For the steady-state solu-
tion, Pp(n) = Pr(n - 1) = Py, Pp(n) = Pp(n - 1) = Pp and
K(#) = K(n - 1) = K. Solving the corresponding Egs. (6 through
8), the following solutions are obtained for the filter estimator,
where Pp, P, Pg, and K are the scalar values of the corre-
sponding matrices:

P, 1j4+ s +1)2 (14)
2 2

%% s

Pp  1j4+ 5 - 1)2 (15)
Uz .5‘2

14+ 52+ 1)2

P 2N+1

7 e
F 1-42

where
- -1 —
A= PFPP =1 —K.

It is interesting to observe that as N increases, PS/PF
approaches (1 + A)™Y. If also s is large, Pg/Py. approaches -
1/2. Thus the variance of position error is reduced by a factor
of 2 for the assumed conditions. This is in accordance with
intuition as stated in the introduction. These results say
nothing about the performance for other conditions.

A. Dynamic Tracking Performance

The dynamic tracking error of an estimation system is an
important performance measure that is not obtained from the
Kalman analysis. To obtain this performance, a z-transform
approach is used.

Assuming steady-state values for the various parameters
and taking the z-transform of the corresponding equations,
the following transfer functions are obtained. For filtering,

XF(é) K
Fp2) = y(2) B z—(lZ-K) (18)

_Y@-X%E@)  -1@-K)
T T z-(1-K) (19)

D =

where E (2 is the error transfer function of the filter.

The smoother and smoother error transfer functions are

Xs@) AN KN - AV KN - 1/57]
Fe@) =~y = G- 1/A) G -4)
(20)
_(@z-DE-1 —AN Kz
E@) = -1y e-4) @n

1. Response to step velocity. The steady-state position
error due to a 1-m/s velocity step input can be computed by
using the final value theorem. For this kind of input, Y(z) =
Tz (¢ - 1)"2 and the position errors for filtering and smooth-
ing are .

ep(e) = LET 22)
N+1
eS(oo) = (1_'1<%<_T (23)
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The importance of this result is that the error of a first-order
smoother to a step velocity input can be made arbitrarily small
by choosing /V sufficiently large since ey() —> 0 as N = oo,

2. Responée to step acceleration. For infinite delay smooth-
ing, the error transfer function is (V = e in Eq. (21)):

132
- 7) -
The z-transform of a 1-m/s? acceleration step input is Y(z) =
T?2z(z + 1) (z - 1)73/2. The position error for infinite delay
smoothing is

- E-1) . (-K)T*
e4(*) 121_11)11 z Ey2)Y(z) = - T (25)
For s > 5 this error reduces approximately to
eg(ed) ~ ~s> 17 (26)

For finite NV, the error due to an acceleration step increases
linearly with time. Figure 2 illustrates the position error as a
function of time when N is finite and the input is a 1-m/s?
acceleration step. The value of s is 5. It can be deduced from
the results in Fig. 2 that for N finite, the error due to an
acceleration step increases with time (¥), approximately as
eg(*)¢ where eg(e°) is the position final error due to a 1-m/s
velocity step and is given by Eq. (23). Thus for a known
maximum observation time ¢, the error due to step accelera-
tion can be made arbitrarily small by choosing N sufficiently

large.

B. Noise Response

The Kalman solution gives the estimate error covariance
due to the state noise and the observation noise. To obtain
2 | . » »
the error covariance due to the observation noise only, a

z-transform approach is again used. The noise response of the

kind of linear estimator discussed here is given by

2

Oout _ 1 1y =1
72 27 Jonr dzF(2)F(z ")z @7
in CIRCLE

Substituting for Fp(z) from Eq. (18) into Eq. (27), the noise
reduction of the filter is

2
Oout . _K
' 0l?n 2-K
F

(28)
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Computing Eq. (27) for the smoother usually requires some
kind of numerical method unless &V => oo, in which case

2
aout
Oin
N
2
/oin) \

For this case of no state noise, Fig.3 shows (o],
NT/'rl, where 7, is the time constant (correlation time) of
the filter. Of course the filter and smoother parameters are
based on the nonzero state covariance. The time constant is

_(1-K?(+(0-K)7)
st -Q1-K)%)°

(29)

2

= T '
T Tk (30)
Note that K depends on s. It can be observed in Fig. 3 that if
the smoothing time lag NT is approximately 4 , then the
noise response approximately reaches its asymptotic value

given by Eq. (29).

- V. Second-Order Smoother

For the second-order case, the state variable is a vector as in
Eq. (2) and

le
x:
o
1T
q)=
bl
H=[1 0] (31)
%13 T/2
Q= 4T , q=ogT
T2 1
R=R =g,

where ¢ is the spectral density of the assumed continuous
acceleration process, ag is the variance of the position mea-
surement, and 02 is the variance of the acceleration noise. The
covariance matrix Q is chosen to be consistent with previous

work (Ref. 3).

The steady-state solution for the filter gains and error
covariance matrices are obtained after considerable algebraic
manipulations and can be found in Ref. 3. In Ref. 3, all the




solutions are expressed in terms of two parameters denoted

there as # and s. For the case presented in this paper, s is infin-

ity since there is no measurement of velocity. Therefore, all

the solutions are functions of 7 defined as
400

(32)
g aT2

From Eq. (10), the smoother steady-state error covariance P
is the solution of
= P,-BKHP,B” - A [P, -P] (AT (33)

where P, P, K are the steady-state filter solutions (Refs. 3
and 4). The asymptotic improvement due to smoothing
(P, - Pg) may be shown to be (Ref. 5)

N
= PFZ ([®7) BT [HP, HT +R] ™ HEH P,
=0 (34)

P, -Pg

where @ = ® - KH. The smoothing gain is obviously a mono-
tonic function of N with most of the gain realized within a few
time constants of the filter. Letting /V approach infinity, we
obtain

&7 p-i ~1 Fp =
[P, -Pg 1 -P &7 B [P Py | P! $P, =
p_H7 [gp, H7 +R] HP (35)
F F F

The above is a linear equation in the elements of (Pp - Pg o)
and can be solved explicitly. Also, A =P, ®T Pp! and B = AN,

P as a function of 7 and the delay N is determined by
Eq. (33). Figure 4 shows the smoothed position accuracy,
Py(1, 1)/0?, as a function of r and V. The case N = 0 corre-
sponds to the filter solution. For large observation noise com-
pared to process noise (large 7), the mean square position accu-
racy improvement due to smoothing over filtering is almost a
factor of 4 for large N (N > 20). This is almost twice the
improvement realized in the first-order case. Intuitively, the
additional improvement for the second-order case comes from
the implicit estimation of rate as well as position.

As in the first-order case, dynamic tracking performance
and noise response analyses are presented next. '

_A. Dynamic Tracking Performance

Taking the z-transforms of the corresponding recursive
equations, the following transfer functions are obtained for
the filter and smoother estimators.

X, @ K 2 +(TK, -K))z
Yo PP T +(K, +K,T-2)z +(1-K,)
. 1 2 1
(36)
X;(l(;r)= S(z)=FF(Z)+z(z—1)2H [1-ZVANT[1- Az] ' AK
z

2+ (K, +K,T-2)z+(1-K,)
(37

where K = (K, K,)T is the Kalman gain vector, and Xz, (2)
and Xg; (z) stand for the first elements of the vectors Xp(z)
and Xg(2), respectively. Equation (37) has been derived from a
numerically more stable recursive equation than of Eq. (9).
This relation is

xS(n) x(n) + Alx, (n +1) - dx ()] +
+ AN [x, (n +N) -~ Bx(n + N - 1)] (38)
The error transfer functions are

(z-D?(1-K)
@-1)% + (K, +K,T)z - 1) +K,T

Ey(@) = (39)

Eyz) = E.(2) -F(z)

G- 1)? [1-K, -zH [1-2" AV][1- Az] ™ AK]
h (z-1)% +(K, +K,T)(z - 1) +K,T

(40)

1. Response to step acceleration, The z-transform of a
1-m/s? acceleration step input is Y{(z) = T2z(z + 1)(z - 1Y3/2.
The steady-state position errors for the filter and smoother are

(1 -Kl)T
ep() = K : (41)

(1-K, -H[I-AV][I- A]T'AK)T
eg(=) = - K, (42)

The filter has finite but nonzero error due to step acceleration,
but the smoother error approaches zero for large V.

Figure 5 shows the steady-state position error computed
from Egs. (41) and (42) vs the normalized smoothing time lag,
NT/r,, The time constant, 7,, of the second-order Kalman fil-
ter, Eq. (35), is obtained by using the mapping between the
s plane and z plane (Ref. 6). The time constant is
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2T

"1 -K,) (43)

T, =

In Fig. 5, note the oscillatory nature of |eg(>0)l. One should
not design NV to operate on a null of this function because dif-
ferences between the model and the actual system will affect
the locations of the nulls. Arbitrarily small error can be
achieved by choosing N large enough so that the error is suffi-
ciently small for this NV and all larger V.

2. Response to step jerk. For infinite delay smoothing, the
position error transfer function is (V — o in Eq. (40))

Eglz) =

(z-D*(1-K)

[(z- D)? +(K, K, TNz - 1) +K T [(z- 1)* - K 2(z - 1) + K 2]

(44)
The z-transform of a 1-m/s3 step jerk is

2(2 +4z +1)

45
o1 (45)

Y(2) =

From Eqgs. (44) and (45) and the final value theorem, it is
easy to see that in this case eg(e?) - 0. Thus, for infinite
smoothing, the steady-state error to step jerk is zero.

For finite &, the error due to a step jerk increases linearly
with time. Figure 6 shows the position error as a function of
time when N is finite. The value of r is 500. It can be seen in
Fig. 6 that for N finite, the error due to a step jerk increases
with time approximately as eg(>0)z where eg(°0) is the position
final error due to a l-m/s® acceleration step and is given by
Eq. (42). This error can be made arbitrarily small for any finite
time interval.

3. Summary of dynamic responses. Table 1 shows a sum-
mary of the dynamic responses for the first- and second-order
Kalman filters and smoothers.

B. Noise Response

As in the first-order case, Eq. (27), the noise response of
the second order Kalman filter with no state noise is given by

2K,T-3K KT +2K:
—02— ) K1(4'2K1 +KzT)
n/p

(46)

The smoother responses are given in Egs. (34) and (35). From
Eq. (37), a specific expression for the smoother transfer func-
tion for N = oo is
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Fy(z) =

z[(2K, - KK, _Kf)(z -1)? +1<§z]

[(z- 1) +(K, +K )z - D +K, ][ - 1D? - (K, +K))2(z - 1) +K,7*]
(47)

Replacing F(z) in Eq. (27) and using the results given in
Ref. 7, the noise response can be easily computed.

Figure 7 shows the noise response of the Kalman filter and
smoother vs NT/r,. Note that for any value of the parameter,
a smoothing time delay of roughly 1.5 7, is enough for the
smoother to approach its asymptotic noise response value.

V1. Examples for Uranus and
Neptune Encounter

Of particular interest in the DSN is the tracking of the
Voyager spacecraft in its close encounters with Uranus and
Neptune. The approximate dynamics for Voyager encounters
are

Planet Acceleration Jerk
Uranus -0.32 m/s? 0.83 X 107% m/s
Neptune -4.00 m/s? 0.29X 1072 m/s®

Assuming an X-band carrier frequency of 84 GHz, a
desired phase error of less than 1° corresponds approximately
to eg(ee) = 10*m. In this example, it is assumed that the
one-sided equivalent noise bandwidth of the Kalman filter
used by the smoother is B = 5 Hz, because the Voyager space-
craft oscillator is known to be stable enough for this loop
bandwidth. Also, it is assumed that BT = 0.05,s0 7=0.01 s.
The assumed Kalman parameters r and s are determined from
the noise results of the previous sections and from the relation-
ship 02,,,/02, = 2B T for the filter (V = 0).

A. First-Order Smoother

For an acceleration step input and N finite, the first-order
Kalman smoother has a position error increasing linearly with
time (see Fig. 2). For BT = 0.05, the corresponding design
parameter obtained from Fig. 3 is s = 5. In this case, from
Eq. (26) or Fig. 2, even when /V is very large the position error
to a 1-m/s? acceleration step is approximately 0.0025 m,
which means that the maximum tolerable position error for
both Uranus and Neptune encounter is exceeded.

B. Second-Order Smoother

For BT = 0.05, the design parameter r obtained from
Fig. 7 is r = 500. For Uranus encounter, a 107*-m lag error



‘with a 0.32-m/s? acceleration corresponds to eg(e°)/T = 0.031 -

at 1 m/s?, which requires NT/r, = 3.4 (Fig. 5). For Neptune
encounter, NT/r, 2> 6.3.

C. Second-Order Filter

The smoother reduces to the filter for &NV = 0, This corre-
sponds to use of a PLL. The steady-state delay error is 0.01 m
for a 1-m/s? acceleration, or 0.003 m at Uranus and 0.04 m at
Neptune. These errors are not satisfactory.

D. Conclusion for Voyager

For the example parameters, a second-order PLL with a
one-sided loop bandwidth of 5 Hz will not yield adequate
dynamic performance for the Voyager encounters. Neither

will a first-order smoother, A second-order smoother will

result in satisfactory performance,

VIl. Comments on Stability and
Implementation Constraints

The smoother-state estimation equation as in Eq. (37)
explicitly shows the dependence of the smoother on the corre-

sponding Kalman filter. Since this dependence is expressed in a
form of a finite sum of filter estimates, it follows that if the

" filter is stable so is the smoother, There are a large number of

methods to ensure the filter stability in actual practical imple-
mentations (Ref. 1). For the results presented in this paper, a
word length of 64 bits has been used to implement the various
filters. It was found that a 32-bit word length was not enough
to guarantee the stability of the filters, but 64 bits do suffice.

VIll. Conclusions

Use of smoothing filters to improve the phase estimation in

* carrier tracking systems has been proposed. First-order and

second-order Kalman optimum smoothers are analyzed. The
steady-state filter gains and error covariances are computed.
Dynamic tracking performance and noise response are investi-
gated by means of z-transform techniques. It is shown that a
second-order Kalman smoother can keep the position error
due to step acceleration or step-jerk inputs less than any
prescribed maximum, assuming the step jerk is applied for
finite time. It is also shown that the phase-error variance due
to observation noise (receiver noise) is reduced by almost a
factor of four by use of second-order smoothing rather than
second-order filtering or a second-order PLL, '
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Table 1. Summary of dynamic responses—steady-state position error, m

Step velocity V Step acceleration A Step jerk J
V(1-K)T
First-order filter Ya-m1 0o oo
K
. V (1 _K)N+ IT oo
First-order smoother _— o
K (Ramp, Fig. 2)
-4 (1-K) 71
First-order smoother, N = oo 0 —_— oo
K2
A{l-XK 1) T
Second-order filter 0 — o
K
2
Second-order smoother 0 A« (Eq. (41))
(Ramp. Fig. 6)
Second-order smoother, NV = e 0 0 0




Flg. 2. First-order smoother: steady-state dynamic response

to 1—m/s? step acceleration
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Fig. 1. Possible realization of smoothing estimator and data detection
1 T T T T T T T T T
B ]_00 T T T T T T T T T I T T T T T T T T T
- - o7
0 I N =40 = v 4
) o~ E
i Y .
& - i %
¢? . (3] 3
[=] N b -
T or 4z ]
B 4 b 2
g‘; i 50 ] 5
w
- i (%] —
g 2 0,10
Zz i ] Z I~ 7
o -2 -] Z 5 i
g 0 60 S 5
-1 (-9 .
L 4 10
-3+ _ .
- ’Tii’%‘ . L NT= DELAY TIME .
i =Rl 7 T, = FILTER TIME CONSTANT
—4-||||I,|.|— oot v v b e b e b
0 500 1000 0 ! 2 3 4
TIME, s NORMALIZED DELAY TIME, N1/,

Fig. 3. First-order smoother response to observation noise;
no state noise.
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